

A New Shuffled Genetic-based Task Scheduling Algorithm in

Heterogeneous Distributed Systems

Mirsaeid Hosseini Shirvani 1

1) Department of Computer Engineering, Sari Branch, Islamic Azad University,

Sari, Iran

Corresponding Author : mirsaeid_hosseini@iausari.ac.ir

Abstract

Distributed systems such as Grid- and Cloud Computing provision web services to their users

in all of the world. One of the most important concerns which service providers encounter is to

handle total cost of ownership (TCO). The large part of TCO is related to power consumption

due to inefficient resource management. Task scheduling module as a key component can has

drastic impact on both user response time and underlying resource utilization. Such

heterogeneous distributed systems have interconnected different processors with different

speed and architecture. Also, the user application which is typically presented in the form of

directed acyclic graph (DAG) must be executed on this type of parallel processing systems.

Since task scheduling in such complicated systems belongs to NP-hard problems, existing

heuristic approaches are no longer efficient. Therefore, the trend is to apply hybrid meta-

heuristic approaches. In this paper, we extend a meta-heuristic shuffled genetic-based task

scheduling algorithm to minimize total execution time, makespan, of user application. In this

regard, we take benefit of other heuristics such as Heterogeneous Earliest Finish Time (HEFT)

approach to generate smart initial population by applying a new shuffle operator which makes

a fortune to explore feasible and promising individuals in the search space. We also conduct

other genetic operators in right way to produce final near to optimal solution. To reach concrete

results we have conducted several scenarios. Our proposed algorithm outperforms in term of

average makespan compared with other existing approaches such as HEFT versions and

QGARAR.

Keywords: Task Scheduling, cloud computing, directed acyclic graph (DAG)

1. Introduction

Distributed systems include unlimited computing and storage resources which are

interconnected with high speed networks [1-3]. Users utilize distributed systems such as Grid

Computing known as E-Science and Cloud Computing known is E-Commerce instead of

procurement of overprovisioned resources to cover only peak demand in hotspot time [4].

Cloud- and Grid computing provision elastic and economic services to their subscribers based

on pay-per use basis for the sake of economy of scale [2, 4]. For instance, several academic

projects which are computation-intensive in nature request huge amount of processing

resources in which it is not affordable for a university to have such systems. For another

example, take a company that wants to backup massive amount of data relevant to several

months of day-to-day of myriad transaction reports. In this line, Amazon S3 service can figure

out the aforementioned problem by low cost charges in $/month/GB storage basis [5]. On the

other hand, response time is one of the most important quality of service (QoS) parameter in

such systems because users would eventually release the providers with low received QoS [6].

In this regards, key element which is determinant in response time and distributed system’s

efficiency is scheduling module. Basically, inefficient scheduling approach leads degradation

in resource utilization and increasing total execution time. So, design and implementation of

smart and efficient scheduling framework is inevitable in such systems. Usually, application

programs contains different subtasks which may have dependency between them; this type of

application is presented in the form of directed acyclic graph (DAG). On the other hand,

underlying infrastructure in distributed systems is named datacenter in which it comprises with

different physical machines and servers interconnected with high speed local area networks

(LANs); it also is scalable geographically. In the other words, datacenters can even be

connected via wide area networks (WANs) although it appears to be a unique entity for its

users so-called transparent system. Scheduling in such systems refers to allocating computing

resources to user tasks which are placed in the application DAG; the goal is to minimize total

execution time of all tasks subject to preserving sub-tasks inter-dependencies constraints. So,

the afore-said problem computationally belongs to NP-hard category. Nevertheless, in

literature, when a user requests an application to be done; task graph applications, shown in the

form of DAG, are usually scheduled in heterogeneous distributed systems with list scheduler

algorithms [11]. List schedulers provide a sorted list of subtasks based on predefined priority;

in fact, each subtask is placed in the list based on the weight that the algorithm assigns to each

node. One of the most famous heuristic list scheduler algorithm is Heterogeneous Earliest

Finish Time (HEFT) approach [11]. For instance UpwardRank, DownwardRank and

LevelRank are three different version of HEFT-based algorithms [10]. List schedulers are

executed in two phases. In the first phase as mentioned, each subtasks which is presented as a

node in DAG is placed in a sorted list based on predetermined priority. The sorted list should

guarantee that the list is topological sort. In other words, it should satisfy precedence

constraints. In the second phase, the scheduler should find the best processor to map the

subtasks on it. It means that algorithm should find the processor which deliver output of

subtasks with earliest finish time (EFT) in the second phase [13]. In this line, evolutionary

algorithms have been adopted in literature to solve such combinatorial problems; but for the

sake of ever-increasing complexity in such systems and problems too, existing heuristic

approaches are no longer efficient. Therefore, the trend is to apply hybrid meta-heuristic

approaches. It is the reason for extending a new meta-heuristic shuffled genetic-based

algorithm to obviate shortcomings of current heuristics. We take benefit of other heuristic

approaches in our new proposed genetic algorithm. For instance, to constitute individuals for

making initial population, we create a multiple priority queues and insert sorted lists which

produced by HEFT versions. Then, we shuffle the lists based on our new algorithm to take

benefit of both exploration and exploitation in search space. We also conduct other GA

operators in right way to gain near optimal and low overhead solutions. The result of

implementation indicates that it is a promising technique. The main contributions of this paper

are as follows:

1- To extend a new shuffled genetic-based heuristic algorithm by using multi priority

queue; in this way, we can produce smart individuals in initial population by applying

shuffle operator; it benefits of both exploration and exploitation in search space.

2- To apply HEFT approach for task-map-to-processors to find suitable processor which

guarantees minimum EFT

The rest of the current paper is organized as follows; related works are discussed in section 2.

System framework containing system and application models are placed in section 3. The

HEFT definition is brought in section 4. Section 5 is dedicated to our proposed approach.

Simulation and Evaluation of our work are brought in Section 6. Finally, Section 7 presents

conclusion and future direction.

2. Related Works

Several works have been done in literature to present clear solution for task scheduling

problems in distributed systems. A PSO-based task scheduling algorithm has been proposed

for efficient handling of cloud resources in scientific programs with respect to deadline defined

by user [7]. This fitness function was reduction on execution time and cost based defined in

fitness function [7]. Although the proposed algorithm is promising, it is specifically designed

for scientific problems which are only computation-intensive. Another task scheduling

algorithm based on ant colony optimization (ACO) was used to minimize makespan of tasks

submitted in cloud environment [8]. The proposed algorithm has had good efficiency on cloud

computing because it launches appropriate virtual machine based on requested tasks.

Nevertheless, the algorithm is limited for only independent tasks. An economical and low-cost

task scheduling algorithm operates based on two strategies; the first strategy allocates the best

virtual machines to tasks based on Pareto dominance. The second strategy reduces overall cost

by mapping unimportant tasks in next phase [9]. The main focus of scheduling algorithm of

the paper was on economic viewpoint which may sacrifice user response time. Multi-Criteria

Task Scheduling in Distributed Systems based on Fuzzy TOPSIS has been presented in 30th

IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) [12]. In this

work, authors applied Fuzzy TOPSIS approach for ranking of alternatives based on users’ and

providers’ preferences. It is originally designed for real-time applications which have time

limitation and independent ones. Another heuristic-based named Bacteria Foraging based has

been proposed for independent task scheduling on cloud computing environment [14]. Despite

its efficiency, it is not applicable for programs with dependent tasks. A quantum genetic

algorithm with rotation angle refinement has been presented in literature to schedule dependent

tasks on distributed systems such as cloud datacenters [15]. The proposed algorithm is

essentially a good approach for quantum computing. It also relies on random generated

population for initial phase leading more iteration rounds to reach satisfaction criteria.

Literature review reveals that a hybrid meta-heuristic approach is favorable in which it would

take benefit from other approaches to reach good results in terms of optimality and take benefit

of both exploration and exploitation in search space.

3. System Framework

Our proposed system framework is depicted in Fig. 1. It has different components such as

Front-end module, Cloud Broker, Scheduler, VMs and Datacenter.

Fig. 1. Proposed system framework

Front-end module receives user applications to be executed on parallel physical machines.

Cloud Broker delivers users semantic of cloud service ability and related quality of service.

The datacenter contains a set of m different heterogeneous processors which are interconnected

with high speed networks. The heterogeneity is based on architecture and speeds; each of which

can run multiple VMs. Such system model is illustrated in Fig. 2.

Fig. 2. A full connected parallel system with three heterogeneous computing system [10]

Moreover, application model is presented in the form of DAG. Fig.3 depicts such applications

which have sub-tasks inter-dependencies.

Fig. 3. An example of DAG application with 11 subtasks

Each task graph, a DAG, has several nodes which are defined for computations and edges

which show average communication cost between nodes. The edge also indicates precedence

constraint between nodes. Every subtask should be executed on one computational node from

our target parallel system. Also, each DAG has two special nodes 𝑇𝐸𝑛𝑡𝑟𝑦 and 𝑇𝐸𝑥𝑖𝑡 that not

have predecessor and successor nodes respectively. As the defined system is heterogeneous in

nature, processing of each subtask of DAG over different computational nodes have different

cost. For instance, Table 1 shows the different task execution times on different processing

nodes. Moreover, the last column indicates average execution time.

Table 1. Different task execution times on different processing nodes

Tasks

Processors Average computation Cost

𝑃0 𝑃1 𝑃2 �̅�

𝑡0
𝑡1
𝑡2
𝑡3
𝑡4
𝑡5
𝑡6
𝑡7

𝑡8
𝑡9
𝑡10

 7 9 8

 10 9 14

 5 7 6

 6 8 7

 10 8 6

 11 13 15

 12 15 18

 10 13 7

 8 9 10

 15 11 13

 8 9 10

8

11

6

7

8

13

15

10

9

13

9

4. Heterogeneous Earliest Finish Time (HEFT)

List schedulers are famous scheduling algorithms in distributed systems. The Heterogeneous

Earliest Finish Time (HEFT) belongs to list scheduler category. It was firstly introduced by

Topcuoglu et al. for static task scheduling on limited heterogeneous parallel processing systems

[11]. On the other hand, Grid Computing is static in nature whereas Cloud Computing is a

dynamic paradigm. Moreover, scheduling can be either static or dynamic; static scheduling

applies prior information and does not vary with time while a dynamic scheduling applies

system-state run time information [15]. To apply such static-oriented algorithm in dynamic

environment, we can determine static time window to treat the problem with static fashion [6].

HEFT applies two important functions: Earliest Finish Time (EFT) and Earliest Start Time

(EST). The former indicates the earliest time in which a processor 𝑃𝑗 can executes subtask 𝑇𝑖

whereas the latter indicates the earliest time that the execution can be started. The earliest start

time for entry task in DAG is zero in which equation (1) calculates. Moreover, functions EST

and EFT for other nodes are calculated by equations (2) and (3) respectively [11].

 EST(𝑛𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑝𝑗) = 0 (1)

 EST(𝑛𝑖 , 𝑝𝑗)= max{ 𝑎𝑣𝑎𝑖𝑙 {𝑗}, max(𝐴𝐹𝑇(𝑛𝑚) + 𝑐𝑚,𝑖)𝑛𝑚∈𝑝𝑟𝑒𝑑(𝑛𝑖)
} (2)

 EFT(𝑛𝑖 , 𝑝𝑗)= 𝑤𝑖,𝑗 + EST(𝑛𝑖, 𝑝𝑗) (3)

The function pred(𝑛𝑖) in equation (2) indicates to a set of all predecessor nodes of 𝑛𝑖 in DAG.

Moreover, the term 𝑎𝑣𝑎𝑖𝑙 {𝑗} illustrates the time that processor 𝑝𝑗 accomplished the last task

on itself and it is ready for the next task to execute. The inner max in equation (2) means that

the actual finish time (AFT) of the last task in pred(𝑛𝑖) should be determined. Meanwhile, the

outer max indicates that it may happen the situation that the output of last subtask of 𝑛𝑖 in

pred(𝑛𝑖) becomes ready later than 𝑎𝑣𝑎𝑖𝑙 {𝑗}. On the other words, despite 𝑝𝑗 readiness, the

execution time is postponed until the time which the last precedence subtask of 𝑛𝑖 is ready;

because this procedure precludes of swerving in dependency constraints violation in task graph

DAG. On the other hand, if the value of 𝑎𝑣𝑎𝑖𝑙 {𝑗} is greater than the finish time of last subtask

in pred(𝑛𝑖), despite execution of all subtasks in pred(𝑛𝑖) , the actual execution will be started

until the processor 𝑝𝑗 is ready. The parameter 𝑐𝑚,𝑖 indicates average transfer time between

processors 𝑝𝑚 and 𝑝𝑖 . If m=i then 𝑐𝑚,𝑖 = 0. The actual execution time for subtask 𝑛𝑖 on

processor 𝑝𝑗 is calculated by equation (4) [11]. Moreover, the total execution time of DAG so

called makespan, is calculated by equation (5) [11].

 𝐴𝐹𝑇(𝑛𝑖 , 𝑝𝑗) = 𝑚𝑖𝑛1≤𝑙≤𝑚𝐸𝐹𝑇(𝑛𝑖, 𝑝𝑙) (4)

 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max { 𝐴𝐹𝑇(𝑛𝑒𝑥𝑖𝑡)} (5)

The aforesaid algorithm is executed in two phases. In the first phase subtasks are sorted based

on predetermined priority. Upward ranking, Downward ranking and Level ranking are three

typical approaches in this ambit [10]. For instance, in Upward ranking approach each subtask

is assigned with a weight from exit subtask to entry subtask. This value for exit subtask is

calculated by equation (6) [11]; for other subtasks the value is calculated by equation (7)

recursively [11].

 𝑟𝑎𝑛𝑘𝑢(𝑛𝑒𝑥𝑖𝑡) = 𝑤𝑒𝑥𝑖𝑡̅̅ ̅̅ ̅̅ ̅ (6)

 (7) 𝑟𝑎𝑛𝑘𝑢(𝑛𝑖) = 𝑤𝑖̅̅ ̅ + 𝑚𝑎𝑥𝑛𝑗∈𝑠𝑢𝑐𝑐(𝑛𝑖)(𝑐𝑖,𝑗̅̅ ̅̅ + 𝑟𝑎𝑛𝑘𝑢(𝑛𝑗))

In addition to, average execution time for each node is calculated by equation (8) [11]. Function

succ(𝑛𝑖) indicates to all successors of 𝑛𝑖 in DAG application.

 𝑤𝑖̅̅ ̅ = ∑
𝑤𝑖,𝑗

𝑞⁄𝑞
𝑗=1 (8)

On the other side, in Downward approach, priority value is calculated from entry node to exit

node. This value is considered zero for entry subtask whereas for other subtasks the value is

recursively calculated by equation (9) [11].

(9) 𝑟𝑎𝑛𝑘𝑑(𝑛𝑖)=𝑚𝑎𝑥𝑛𝑗∈𝑝𝑟𝑒𝑑(𝑛𝑖)(𝑟𝑎𝑛𝑘𝑑(𝑛𝑗) + 𝑤𝑗̅̅ ̅ + 𝑐𝑖,𝑗̅̅ ̅̅)

In the Level ranking approach, level for each subtask is calculated by equation (10) [11]. Then,

each subtask is placed in sorting list based on its level value in increasing order. In case of the

same level for two different subtasks, the subtask which have greater value in sum of Upward

rank and Downward values is selected from left to right in ordered list.

𝐿𝑒𝑣𝑒𝑙(𝑇𝑖) = {
0, 𝑖𝑓 𝑇𝑖 = 𝑇𝑒𝑛𝑡𝑒𝑟𝑦

max (𝐿𝑒𝑣𝑒𝑙(𝑇𝑗))𝑇𝑗∈𝑝𝑟𝑒𝑑(𝑇𝑖) + 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (10)

For instance, for DAG depicted in Fig. 3, Table 2 shows the priority values of different

approaches for each node.

Table 2. Task priority based on three approaches

Tasks 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) 𝑟𝑎𝑛𝑘𝑑(𝑡𝑖) Level 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖)

𝑡0

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡7

𝑡8

𝑡9

𝑡10

102

79

80

52

50

57

61

34

25

32

9

0

20

22

39

46

42

41

62

62

70

93

0

1

1

2

2

2

2

3

3

3

4

102

99

102

91

96

99

102

96

87

102

102

Hence, three queues of subtasks [
𝑡0𝑡2𝑡1𝑡6𝑡5𝑡3𝑡4𝑡7𝑡9𝑡8𝑡10],[𝑡0𝑡1𝑡2𝑡3𝑡6𝑡5𝑡4𝑡7𝑡8𝑡9𝑡10] and [𝑡0𝑡2𝑡1𝑡6𝑡4𝑡3𝑡9𝑡7𝑡9𝑡8𝑡10] are valid

topological sort, based on Upward, Downward and Level ranking approaches [10]. As stated

before, in the second phase, a subtask is picked up from in front of sorted list to be scheduled;

the algorithm searches to find a processor which guarantees the earliest finish time for that

subtask. Therefore, different states will be produced by small input DAG; even worse, when

the input DAG is huge, it cannot be harnessed by deterministic algorithms; the reason why we

develop heuristic approach to figure out such problem.

5. Proposed Genetic Algorithm (GA) for Task Scheduling in Heterogeneous Systems

In this section, we present our proposed heuristic method which take benefit from other

approaches, i.e., Upward, Downward and Level rankings in their initial population. One of the

oldest and applicable heuristic method is genetic algorithm (GA) which inspires from nature.

In the other words, each individual adapting itself with environment circumstance will survive.

So, emulated problems can work accordingly. Every candidate solution, individual in GA,

which has more vicinity to optimal solution will remain in next generation. GA has some

operators to produce appropriate generation. Our proposed method is depicted in Fig. 4.

Input: GA and DAG characteristics

Output: An optimal task scheduling

1. Call INIT procedure to create initial population

2. Repeat

3. Call Mapper procedure to apply task-to-processor mapping and evaluate fitness

4. Copy the elitism individuals directly to the next generation

5. Repeat

6. Call Roulette-wheel operator to select candidates

7. Call Crossover operator

8. Call Mutation operator

9. Until the new population is completed

10. Replace the old population with new one

11. Until the termination criteria are met

12. Return an optimal schedule

End

Fig. 4. Algorithm for Proposed Method

5.1 Gens, Chromosomes and INIT procedure

In GA, phenotype should be converted to genotype. In this regards, arbitrary encoding can be

extended. In this paper, each subtask can be used as a gen; so, sequence of gens makes a

chromosome. For instance, [𝑡0𝑡1𝑡2𝑡3𝑡6𝑡5𝑡4𝑡7𝑡8𝑡9𝑡10] can be known as a valid chromosome

because each subtask is visited after its parents. To create initial population, we call INIT

procedure to make current generation with Popsize fixed individuals. In this work we take

Popsize=100. To take benefit from other approaches, we take three chromosomes from

Upward, Downward and Level rankings. The rest chromosomes are created randomly and

shuffled from multi queue with suitable distribution because inefficient dispersion of

individuals has drastic affection on algorithm’s optimality, speed and convergency. The pseudo

code of INIT procedure is depicted in Fig 5. It also uses a Shuffle procedure which is detailed

in Fig 6. Also in Fig. 6, procedure feasible at line #18 checks whether a chromosome is valid

or not.

Procedure INIT

Input: A DAG with its characteristics, PopSize, n as length of Population and chromosome respectively

Output: An initialize Population with PopSize

1. Size=1;

2. Ind1= Call HEFT-UpwardRank to make first individual

3. Copy Ind1 into Population

4. Size=size+1;

5. Ind2= Call HEFT-DownwardRank to make second individual

6. Copy Ind2 into Population

7. Size=size+1;

8. Ind3= Call HEFT-LevelRank to make third individual

9. Copy Ind3 into Population

10. Size=size+1;

11. Pop1= Shuffle (Population(1) , n)

12. Pop2= Shuffle (Population(2) , n)

13. Pop3= Shuffle (Population(3) , n)

14. Copy PopSize/3 of individuals from Pop1 to Population so that containing its first individual.

15. Copy PopSize /3 of individuals from Pop2 to Population so that containing its first individual.

16. Copy PopSize /3 of individuals from Pop3 to Population so that containing its first individual.

Return Population with PopSize

Fig 5. INIT procedure for making initial population

Procedure Shuffle (Individual, n)

Input: An individual and n as length of its chromosome size

Output: A list containing k members of individuals known as CurrentPop with CurrentPopSize.

1. CurrentPopSize=1;

2. CurrentPop= [];

3. Copy individual to CurrentPop

4. For i=1 to n-1 do

5. Find 𝑇𝑗 as the last predecessor of 𝑇𝑖 .

6. Find 𝑇𝑘 as the first successor of 𝑇𝑖 .

7. Temp=𝑇𝑖

8. L=k-1;

9. For q=i to k-2 do

10. 𝑇𝑞 = 𝑇𝑞+1

11. End-For

12. 𝑇𝐿 = 𝑇𝑒𝑚𝑝
13. If feasible(new individual) then

14. Add new individual to CurrentPop

15. CurrentPopSize=CurrentPopSize+1;

16. End-if

17. // Again it repeats for original individual to make new one

18. L=j+1;

19. For q=i down to j+2 do

20. 𝑇𝑞 = 𝑇𝑞−1

21. End-For

22. 𝑇𝐿 = 𝑇𝑒𝑚𝑝

23. If feasible(new individual) then

24. Add new individual to CurrentPop

25. CurrentPopSize=CurrentPopSize+1;

26. End-if

27. End-For

Return CurrentPop with CurrentPopSize

Fig 6. Shuffle procedure to explore search space

5.2 Mapper Procedure

In this phase, each chromosome which is representative of a candidate solution can be mapped

on multi heterogeneous processors by HEFT algorithm, c.f. in 2.2. Then, makespan can be

considered as a fitness value for evaluation; namely, each chromosome with lowest makespan

is the fittest.

5.3 Roulette-Wheel procedure

Portion of individuals, with special probabilistic, are selected to create new generation. This

will happen by crossover operator. In roulette-wheel, we take the procedure in which each

chromosome with high fitness has greater chance to be selected. The equation (11), is the

formula that indicates each chromosome chance to be selected.

(11) 𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑃𝑜𝑝𝑆𝑖𝑧𝑒
𝑗=1

5.4 Crossover operator

To create new generation, GA utilizes crossover operator. After couple of individuals are

selected by roulette-wheel operator, individuals are input for crossover operator. From the

outset, one random number is generated in [1..chromosome-length]. Then, it halves parents in

two subsections. The left part of the first parent is placed for left part of the first child; then the

right part of child is filled by gens which not appeared in this child when second parent’s gens

are visited from left to right. Accordingly, the left part of second parent is placed to left part of

second child; the rest will be filled by gens which not appeared in this child when first parent’s

gens are visited from left to right. It is well illustrated in Fig. 7. In this phase, we take crossover

rate, known as crate, 80 percent of PopSize.

Fig. 7. Crossover operator in GA

5.5 Mutation Operator

The majority of evolutionary algorithm will get stuck in local optimum. The GA is not

exempted from this event. To avoid from this phenomenon, the GA take benefit of mutation

operator to create a chance for opening new room for searching unexplored search space which

may have good solution. In mutation, one gen is randomly selected as 𝑡𝑖 then the first successor

of this gen, subtask, is found kwon as 𝑡𝑗. Then the random gen, subtask 𝑡𝑘, where k belongs to

[i+1..j-1] can be selected subject to all predecessor of this subtasks are ahead of 𝑡𝑖 in the sorted

list. Then, the subtasks 𝑡𝑖 and 𝑡𝑘 can be substituted. In this way, a new individual is generated.

Fig. 8 is depicted to show mutation operator in GA. As Fig. 8 indicates, subtask 𝑡7 in position

6th is randomly selected. The first successor of 𝑡7 is 𝑡10 in DAG. Then, the random gen, subtask

𝑡𝑘, should be selected in postion ϵ [7..10] so that all of predecessor of 𝑡𝑘 is ahead of 𝑡7 in

chromosome. For instance, in position 7th, the subtask 𝑡8 is selected because its only

predecessor, i.e. 𝑡5 is ahead of 𝑡7 in chromosome. Consequently, gens 𝑡7 and 𝑡8 can be

substituted. In this phase, we take mutation rate, known as mrate, 20 percent of PopSize.

Fig. 8. Mutation Operator in GA

5.6 Termination Criteria

GA is endless algorithm unless the user cut the program which reaches to special point. Typical

termination criteria in such algorithms are predetermined rounds, reaching to appropriate

fitness function and etc. In this algorithm, we iterate the program 100 times. The number 100

is achieved experimentally.

6. Simulation and Evaluation

In this section, we applied series of experiments to evaluate the effectiveness of our proposed

methodology. In this regard, we assess our work in term of total execution time, makespan,

related to task graphs against HEFT versions and an existing approach such as Quantum genetic

algorithm with rotation angle refinement for dependent task scheduling on distributed systems

known as QGARAR[15].

6.1 Simulation Environment

All experiments were implemented using Sony VAIO laptop with a 2.26 GHz Intel Core 2 Duo

processor and 4 GB RAM and using Matlab software 2015.

6.2 Evaluation of Methodology

To evaluate proposed algorithm, we conduct this section in two folds. Firstly, we bring an

example to show the effectiveness and application of the proposed algorithm. Secondly, we

define complicated scenarios to reach concrete results. At first, take a DAG depicted in Fig. 3.

We run our program and compare the result with three heuristic HEFT algorithms; namely,

Upward, Downward, Level ranking approaches [10] and one newest heuristic such as

QGARAR [15]. Fig. 9, Fig. 10, Fig.11, Fig. 12 and Fig. 13 illustrate Upward, Downward, Level

ranking and QGARAR and our proposed approach respectively. Moreover, in these figures,

the skewed lines indicate data transfer between different processors.

Fig. 9. Upward Ranking Priority [10].

Fig. 10. Downward Ranking Priority [10].

Fig. 11. Level Ranking Priority [10].

Fig. 12. QGARAR [15].

Fig. 13. Our Proposed Scheduling

Also, Fig. 14 illustrates comparison of total execution time, makespan, between approaches for

DAG depicted in Fig. 3. As it depicts, our proposed method has the lowest makespen in

comparison among others.

Fig. 14. Comparison of makespan between approaches for DAG depicted in Fig.3

Secondly, to reach concrete results we conduct 9 different scenarios. We define 3 types of

graphs; namely, light, middle and heavy graphs with 30, 50 and 100 processing nodes each of

which would run on 5, 8 and 10 heterogeneous parallel processors respectively. We take weight

numbers which are produced with uniform distribution in [10..20] for processing nodes and

uniform distribution weight numbers from [10..30] for communication costs between

processors. Apparently, we define 9 scenarios, but for the sake of reasons which will be told,

we analyze only 3 complicated scenarios, i.e., light, middle and heavy graphs on 5, 8 and 10

processors respectively. For instance, take a random light DAG with 30 nodes that has

aforementioned computation and communication features. We run it on parallel processors

from 2 to 10 processors by increasing one processor in each step. We have recorded makespan

for afore-said DAG as Fig. 15 illustrates.

Fig. 15. makespan trajectory by increasing processors

As the figure depicts the makespan are 353, 300, 239, 238 for 2,3,4 and 5 processors

respectively. It indicates if we spend more processors there is not any improvement in

makespan; it is a clear-cut proof of amdahl’s law because the dependecies between tasks

suppress against speedup [16]. In the other words, for the processor numbers 𝑃∗>5 there is no

changes in makespan. Anyway, 3 complicated scenarios have been executed 50 times; then,

the average makespan as a result of each approach was recorded. Fig. 16 illustrates analysis of

the first scenario with light random DAGs running on 5 heterogeneous parallel processors.

Fig. 16. Comparison of approaches in term of makespan in the first scenario

Also, Fig. 17 illustrates analysis of the second scenario with middle random DAGs running on

8 heterogeneous parallel processors.

Fig. 17. Comparison of approaches in term of makespan in the secomd scenario

Finally, Fig. 18 illustrates analysis of the third scenario with heavy random DAGs running on

10 heterogeneous parallel processors.

Fig. 18. Comparison of approaches in term of makespan in the third scenario

Since heuristic and evolutionary algorithms are not deterministic, but are stochastic in nature,

we only analyze the outcome by several executions of different simulations. Therefore, we

have conducted different scenarios to simulate. The simulation results show the high

superiority dominance of proposed approach against multiple version of HEFT and marginal

dominance against QGARAR; it is because of the strategies which proposed algorithm has

taken. In the initial phase, it smartly constituted initial population from different heuristics to

exploit efficient solutions and in the next phase it shuffled search space to explore promising

ones. Although QGARAR has good treatment, our proposed approach are semi-random and

applies benefit of both exploration and exploitation in search space. It is the reason the proposed

algorithm has predominance against QGARAR in all scenarios.

7 Conclusion and Future Work

Task scheduler module is one of the most important component in distributed systems such as

in Grid- and Cloud Computing. Inefficient resource allocation owing to inefficient task

scheduling does not lead the economic sense. Because the underlying utilized resource is not

rationale for the tasks being executed. On the other hand, users will definitely get rid of from

inefficient providers thanks to competitive open market such as in multi-cloud environment.

To survive in this competitive market, it compels providers to improve response time as a key

element in quality of service parameters. The good responsiveness is achievable via smart

scheduler the reason why we have extended a genetic-based heuristic task scheduling algorithm

in such heterogeneous systems. To have good optimality, speed and convergence, we have

taken benefit from other heuristic approaches in which we smartly put multi queue in initial

population; consequently, our approach has had better result in term of average makespan in

comparison with other existing approaches. It is because of the strategies which proposed

algorithm has taken. In the initial phase, it smartly constituted initial population from different

heuristics to exploit efficient solutions and in the next phase it shuffled search space to explore

promising ones. Although QGARAR has good treatment, our proposed approach are semi-

random and applies benefit of both exploration and exploitation in search space. It is the reason

the proposed algorithm has predominance against QGARAR in all scenarios. We envisage to

extend a smart scheduling model which simultaneously improve both response time and

resource utilization by applying dynamic voltage frequency scaling (DVFS) for tasks which do

not have any time constraints. In other words, we intend to develop scheduling algorithm to

find slack time of each task; by knowing time information of each task we can adjust frequency

and voltage pair based on current workload.

References:

[1] Armbrust M, Fox A, Griffith R, D. Joseph A and Katz R, ‘‘Above the Clouds: A Berkeley

View of Cloud Computing’’. Technical report EECS-2009-28, UC Berkeley, 2009.

[2] P. Mell, T. Grance, The NIST definition of cloud computing, Natl. Inst. Stand. Technol. 53

(6) (2009) 50.

[3] A.S. Tanenbaum & M.V Steen, distributed systems: principles and paradigms, second

edition, prentice hall (2007).

[4] Hosseini Shirvani M, Rahmani AM, Sahafi A. An iterative mathematical decision model

for cloud migration: A cost and security risk approach. Softw Pract Exper. 2017;1-37.

https://doi.org/10.1002/spe.2528

[5] Amazon FAQ on S3. https://aws.amazon.com/s3/faqs/ [6 Jaunarary 2018].

[6] A. Burkimsher, I. Bate, L. S. Indrusiak, A survey of scheduling metrics and an improved

ordering policy for list schedulers operating on workloads with dependencies and a wide

variation in execution times, Future Generation Computer Systems 29 (2013) 2009–2025.

[7] T. S. Somasundaram and K. Govindarajan, "CLOUDRB: A framework for scheduling and

managing High-Performance Computing (HPC) applications in science cloud," Future

Generation Computer Systems, vol. 34, pp. 47-65, 5// 2014.

[8] L. Wang and L. Ai, "Task Scheduling Policy Based on Ant Colony Optimization in Cloud

Computing Environment," in LISS 2012: Proceedings of 2nd International Conference on

Logistics, Informatics and Service Science, Z. Zhang, R. Zhang, and J. Zhang, Eds., ed Berlin,

Heidelberg: Springer Berlin Heidelberg, 2013, pp. 953-957.

[9] S. Su, J. Li, Q. Huang, X. Huang, K. Shuang, and J. Wang, "Cost-efficient task scheduling

for executing large programs in the cloud," Parallel Computing, vol. 39, pp. 177-188, 4// 2013.

[10] Y. Xu, K. Li, J. Hu, and K. Li, "A genetic algorithm for task scheduling on heterogeneous

computing systems using multiple priority queues," Information Sciences, vol. 270, pp. 255-

287, 6/20/ 2014.

[11] H. Topcuoglu, S. Hariri, and W. Min-You, "Performance-effective and low-complexity

task scheduling for heterogeneous computing," Parallel and Distributed Systems, IEEE

Transactions on, vol. 13, pp. 260-274, 2002.

[12] M. Hosseini Shirvani , N. Amirsoleimani, S. Salimpour, A. Azab, Multi-Criteria Task

Scheduling in Distributed Systems based on Fuzzy TOPSIS, 2017 IEEE 30th Canadian

Conference on Electrical and Computer Engineering (CCECE).

[13] A.Ghaffari and A.Kamalinia, “Hybrid Task Scheduling Method for Cloud Computing by

Genetic and PSO algorithm”, Journal of Information Systems and Telecommunication, 4(4),

2016.

[14] J. Verma, S. Sobhanayak, S. Sharma, A. K. Turuk and B. Sahoo, "Bacteria foraging based

task scheduling algorithm in cloud computing environment," 2017 International Conference on

Computing, Communication and Automation (ICCCA), Greater Noida, 2017, pp. 777-782.

[15] T. Gandhi, Nitin and T. Alam, "Quantum genetic algorithm with rotation angle refinement

for dependent task scheduling on distributed systems," 2017 Tenth International Conference

on Contemporary Computing (IC3), Noida, India, 2017, pp. 1-5.

[16] Amdahl, Gene M., "Amdahl's Law in the Multicore Era", Computer, 41 (7), 33–38, 2008.

https://aws.amazon.com/s3/faqs/

