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Abstract 

Distributed systems such as Grid- and Cloud Computing provision web services to their users 

in all of the world. One of the most important concerns which service providers encounter is to 

handle total cost of ownership (TCO). The large part of TCO is related to power consumption 

due to inefficient resource management. Task scheduling module as a key component can has 

drastic impact on both user response time and underlying resource utilization. Such 

heterogeneous distributed systems have interconnected different processors with different 

speed and architecture. Also, the user application which is typically presented in the form of 

directed acyclic graph (DAG) must be executed on this type of parallel processing systems. 

Since task scheduling in such complicated systems belongs to NP-hard problems, existing 

heuristic approaches are no longer efficient. Therefore, the trend is to apply hybrid meta-

heuristic approaches. In this paper, we extend a meta-heuristic shuffled genetic-based task 

scheduling algorithm to minimize total execution time, makespan, of user application. In this 

regard, we take benefit of other heuristics such as Heterogeneous Earliest Finish Time (HEFT) 

approach to generate smart initial population by applying a new shuffle operator which makes 

a fortune to explore feasible and promising individuals in the search space. We also conduct 

other genetic operators in right way to produce final near to optimal solution. To reach concrete 

results we have conducted several scenarios. Our proposed algorithm outperforms in term of 

average makespan compared with other existing approaches such as HEFT versions and 

QGARAR. 
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1. Introduction 

Distributed systems include unlimited computing and storage resources which are 

interconnected with high speed networks [1-3]. Users utilize distributed systems such as Grid 

Computing known as E-Science and Cloud Computing known is E-Commerce instead of 

procurement of overprovisioned resources to cover only peak demand in hotspot time [4]. 

Cloud- and Grid computing provision elastic and economic services to their subscribers based 

on pay-per use basis for the sake of economy of scale [2, 4]. For instance, several academic 

projects which are computation-intensive in nature request huge amount of processing 

resources in which it is not affordable for a university to have such systems. For another 

example, take a company that wants to backup massive amount of data relevant to several 



months of day-to-day of myriad transaction reports. In this line, Amazon S3 service can figure 

out the aforementioned problem by low cost charges in $/month/GB storage basis [5]. On the 

other hand, response time is one of the most important quality of service (QoS) parameter in 

such systems because users would eventually release the providers with low received QoS [6]. 

In this regards, key element which is determinant in response time and distributed system’s 

efficiency is scheduling module. Basically, inefficient scheduling approach leads degradation 

in resource utilization and increasing total execution time. So, design and implementation of 

smart and efficient scheduling framework is inevitable in such systems. Usually, application 

programs contains different subtasks which may have dependency between them; this type of 

application is presented in the form of directed acyclic graph (DAG). On the other hand, 

underlying infrastructure in distributed systems is named datacenter in which it comprises with 

different physical machines and servers interconnected with high speed local area networks 

(LANs); it also is scalable geographically. In the other words, datacenters can even be 

connected via wide area networks (WANs) although it appears to be a unique entity for its 

users so-called transparent system. Scheduling in such systems refers to allocating computing 

resources to user tasks which are placed in the application DAG; the goal is to minimize total 

execution time of all tasks subject to preserving sub-tasks inter-dependencies constraints. So, 

the afore-said problem computationally belongs to NP-hard category. Nevertheless, in 

literature, when a user requests an application to be done; task graph applications, shown in the 

form of DAG, are usually scheduled in heterogeneous distributed systems with list scheduler 

algorithms [11]. List schedulers provide a sorted list of subtasks based on predefined priority; 

in fact, each subtask is placed in the list based on the weight that the algorithm assigns to each 

node. One of the most famous heuristic list scheduler algorithm is Heterogeneous Earliest 

Finish Time (HEFT) approach [11]. For instance UpwardRank, DownwardRank and 

LevelRank are three different version of HEFT-based algorithms [10]. List schedulers are 

executed in two phases. In the first phase as mentioned, each subtasks which is presented as a 

node in DAG is placed in a sorted list based on predetermined priority. The sorted list should 

guarantee that the list is topological sort. In other words, it should satisfy precedence 

constraints. In the second phase, the scheduler should find the best processor to map the 

subtasks on it. It means that algorithm should find the processor which deliver output of 

subtasks with earliest finish time (EFT) in the second phase [13]. In this line, evolutionary 

algorithms have been adopted in literature to solve such combinatorial problems; but for the 

sake of ever-increasing complexity in such systems and problems too, existing heuristic 

approaches are no longer efficient. Therefore, the trend is to apply hybrid meta-heuristic 

approaches. It is the reason for extending a new meta-heuristic shuffled genetic-based 

algorithm to obviate shortcomings of current heuristics. We take benefit of other heuristic 

approaches in our new proposed genetic algorithm. For instance, to constitute individuals for 

making initial population, we create a multiple priority queues and insert sorted lists which 

produced by HEFT versions. Then, we shuffle the lists based on our new algorithm to take 

benefit of both exploration and exploitation in search space. We also conduct other GA 

operators in right way to gain near optimal and low overhead solutions. The result of 

implementation indicates that it is a promising technique. The main contributions of this paper 

are as follows: 

1- To extend a new shuffled genetic-based heuristic algorithm by using multi priority 

queue; in this way, we can produce smart individuals in initial population by applying 

shuffle operator; it benefits of both exploration and exploitation in search space. 



2- To apply HEFT approach for task-map-to-processors to find suitable processor which 

guarantees minimum EFT 

 

The rest of the current paper is organized as follows; related works are discussed in section 2. 

System framework containing system and application models are placed in section 3. The 

HEFT definition is brought in section 4. Section 5 is dedicated to our proposed approach. 

Simulation and Evaluation of our work are brought in Section 6. Finally, Section 7 presents 

conclusion and future direction. 

2. Related Works 

Several works have been done in literature to present clear solution for task scheduling 

problems in distributed systems. A PSO-based task scheduling algorithm has been proposed 

for efficient handling of cloud resources in scientific programs with respect to deadline defined 

by user [7]. This fitness function was reduction on execution time and cost based defined in 

fitness function [7]. Although the proposed algorithm is promising, it is specifically designed 

for scientific problems which are only computation-intensive. Another task scheduling 

algorithm based on ant colony optimization (ACO) was used to minimize makespan of tasks 

submitted in cloud environment [8]. The proposed algorithm has had good efficiency on cloud 

computing because it launches appropriate virtual machine based on requested tasks. 

Nevertheless, the algorithm is limited for only independent tasks. An economical and low-cost 

task scheduling algorithm operates based on two strategies; the first strategy allocates the best 

virtual machines to tasks based on Pareto dominance. The second strategy reduces overall cost 

by mapping unimportant tasks in next phase [9]. The main focus of scheduling algorithm of 

the paper was on economic viewpoint which may sacrifice user response time.  Multi-Criteria 

Task Scheduling in Distributed Systems based on Fuzzy TOPSIS has been presented in 30th 

IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) [12]. In this 

work, authors applied Fuzzy TOPSIS approach for ranking of alternatives based on users’ and 

providers’ preferences. It is originally designed for real-time applications which have time 

limitation and independent ones. Another heuristic-based named Bacteria Foraging based has 

been proposed for independent task scheduling on cloud computing environment [14]. Despite 

its efficiency, it is not applicable for programs with dependent tasks. A quantum genetic 

algorithm with rotation angle refinement has been presented in literature to schedule dependent 

tasks on distributed systems such as cloud datacenters [15]. The proposed algorithm is 

essentially a good approach for quantum computing. It also relies on random generated 

population for initial phase leading more iteration rounds to reach satisfaction criteria. 

Literature review reveals that a hybrid meta-heuristic approach is favorable in which it would 

take benefit from other approaches to reach good results in terms of optimality and take benefit 

of both exploration and exploitation in search space. 

3. System Framework 

Our proposed system framework is depicted in Fig. 1. It has different components such as 

Front-end module, Cloud Broker, Scheduler, VMs and Datacenter.  



 

Fig. 1. Proposed system framework 

Front-end module receives user applications to be executed on parallel physical machines. 

Cloud Broker delivers users semantic of cloud service ability and related quality of service. 

The datacenter contains a set of m different heterogeneous processors which are interconnected 

with high speed networks. The heterogeneity is based on architecture and speeds; each of which 

can run multiple VMs. Such system model is illustrated in Fig. 2. 

 

 

Fig. 2. A full connected parallel system with three heterogeneous computing system [10] 

Moreover, application model is presented in the form of DAG. Fig.3 depicts such applications 

which have sub-tasks inter-dependencies. 

 



 

Fig. 3. An example of DAG application with 11 subtasks 

Each task graph, a DAG, has several nodes which are defined for computations and edges 

which show average communication cost between nodes. The edge also indicates precedence 

constraint between nodes. Every subtask should be executed on one computational node from 

our target parallel system. Also, each DAG has two special nodes 𝑇𝐸𝑛𝑡𝑟𝑦 and 𝑇𝐸𝑥𝑖𝑡 that not 

have predecessor and successor nodes respectively. As the defined system is heterogeneous in 

nature, processing of each subtask of DAG over different computational nodes have different 

cost. For instance, Table 1 shows the different task execution times on different processing 

nodes. Moreover, the last column indicates average execution time. 

Table 1. Different task execution times on different processing nodes 

 

Tasks 

Processors Average computation Cost 

𝑃0 𝑃1 𝑃2 �̅� 

𝑡0 
𝑡1 
𝑡2 
𝑡3 
𝑡4 
𝑡5 
𝑡6 
𝑡7 

𝑡8 
𝑡9 
𝑡10 

     7               9               8 

    10              9              14 

      5              7                6 

      6              8                7 

     10             8                6 

     11            13              15 

     12            15              18 

     10            13               7 

       8             9               10 

     15            11              13 

       8             9               10 

8 

11 

6 

7 

8 

13 

15 

10 

9 

13 

9 

 

 

 



4. Heterogeneous Earliest Finish Time (HEFT) 

List schedulers are famous scheduling algorithms in distributed systems. The Heterogeneous 

Earliest Finish Time (HEFT) belongs to list scheduler category. It was firstly introduced by 

Topcuoglu et al. for static task scheduling on limited heterogeneous parallel processing systems 

[11]. On the other hand, Grid Computing is static in nature whereas Cloud Computing is a 

dynamic paradigm. Moreover, scheduling can be either static or dynamic; static scheduling 

applies prior information and does not vary with time while a dynamic scheduling applies 

system-state run time information [15]. To apply such static-oriented algorithm in dynamic 

environment, we can determine static time window to treat the problem with static fashion [6]. 

HEFT applies two important functions: Earliest Finish Time (EFT) and Earliest Start Time 

(EST). The former indicates the earliest time in which a processor 𝑃𝑗 can executes subtask 𝑇𝑖 

whereas the latter indicates the earliest time that the execution can be started. The earliest start 

time for entry task in DAG is zero in which equation (1) calculates. Moreover, functions EST 

and EFT for other nodes are calculated by equations (2) and (3) respectively [11]. 

 

   EST(𝑛𝑒𝑛𝑡𝑒𝑟𝑦 , 𝑝𝑗) = 0                                                       (1) 

   EST(𝑛𝑖 , 𝑝𝑗)= max{ 𝑎𝑣𝑎𝑖𝑙 {𝑗}, max(𝐴𝐹𝑇(𝑛𝑚) + 𝑐𝑚,𝑖)𝑛𝑚∈𝑝𝑟𝑒𝑑(𝑛𝑖)
}                    (2) 

   EFT(𝑛𝑖 , 𝑝𝑗)= 𝑤𝑖,𝑗 +  EST(𝑛𝑖, 𝑝𝑗)                                            (3) 

 

The function pred(𝑛𝑖) in equation (2) indicates to a set of all predecessor nodes of 𝑛𝑖 in DAG. 

Moreover, the term 𝑎𝑣𝑎𝑖𝑙 {𝑗} illustrates the time that processor 𝑝𝑗 accomplished the last task 

on itself and it is ready for the next task to execute. The inner max in equation (2) means that 

the actual finish time (AFT) of the last task in pred(𝑛𝑖) should be determined. Meanwhile, the 

outer max indicates that it may happen the situation that the output of last subtask of 𝑛𝑖 in 

pred(𝑛𝑖) becomes ready later than 𝑎𝑣𝑎𝑖𝑙 {𝑗}. On the other words, despite 𝑝𝑗 readiness, the 

execution time is postponed until the time which the last precedence subtask of 𝑛𝑖 is ready; 

because this procedure precludes of swerving in dependency constraints violation in task graph 

DAG. On the other hand, if the value of 𝑎𝑣𝑎𝑖𝑙 {𝑗} is greater than the finish time of last subtask 

in pred(𝑛𝑖), despite execution of all subtasks in pred(𝑛𝑖) , the actual execution will be started 

until the processor 𝑝𝑗 is ready. The parameter 𝑐𝑚,𝑖 indicates average transfer time between 

processors 𝑝𝑚 and 𝑝𝑖 . If m=i then 𝑐𝑚,𝑖 = 0. The actual execution time for subtask 𝑛𝑖 on 

processor 𝑝𝑗 is calculated by equation (4) [11]. Moreover, the total execution time of DAG so 

called makespan, is calculated by equation (5) [11]. 

    𝐴𝐹𝑇(𝑛𝑖 , 𝑝𝑗) = 𝑚𝑖𝑛1≤𝑙≤𝑚𝐸𝐹𝑇(𝑛𝑖, 𝑝𝑙)                                         (4) 

    𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 =  max { 𝐴𝐹𝑇(𝑛𝑒𝑥𝑖𝑡)}                                             (5) 

 

The aforesaid algorithm is executed in two phases. In the first phase subtasks are sorted based 

on predetermined priority. Upward ranking, Downward ranking and Level ranking are three 

typical approaches in this ambit [10]. For instance, in Upward ranking approach each subtask 

is assigned with a weight from exit subtask to entry subtask. This value for exit subtask is 



calculated by equation (6) [11]; for other subtasks the value is calculated by equation (7) 

recursively [11]. 

         𝑟𝑎𝑛𝑘𝑢(𝑛𝑒𝑥𝑖𝑡) = 𝑤𝑒𝑥𝑖𝑡̅̅ ̅̅ ̅̅ ̅                                                   (6)            

 

                       (7)        𝑟𝑎𝑛𝑘𝑢(𝑛𝑖) = 𝑤𝑖̅̅ ̅ + 𝑚𝑎𝑥𝑛𝑗∈𝑠𝑢𝑐𝑐(𝑛𝑖)(𝑐𝑖,𝑗̅̅ ̅̅ + 𝑟𝑎𝑛𝑘𝑢(𝑛𝑗)) 

In addition to, average execution time for each node is calculated by equation (8) [11]. Function 

succ(𝑛𝑖) indicates to all successors of 𝑛𝑖 in DAG application.  

      𝑤𝑖̅̅ ̅ = ∑
𝑤𝑖,𝑗

𝑞⁄𝑞
𝑗=1                                                         (8) 

On the other side, in Downward approach, priority value is calculated from entry node to exit 

node. This value is considered zero for entry subtask whereas for other subtasks the value is 

recursively calculated by equation (9) [11]. 

(9)                            𝑟𝑎𝑛𝑘𝑑(𝑛𝑖)=𝑚𝑎𝑥𝑛𝑗∈𝑝𝑟𝑒𝑑(𝑛𝑖)(𝑟𝑎𝑛𝑘𝑑(𝑛𝑗) + 𝑤𝑗̅̅ ̅ + 𝑐𝑖,𝑗̅̅ ̅̅ )  

In the Level ranking approach, level for each subtask is calculated by equation (10) [11]. Then, 

each subtask is placed in sorting list based on its level value in increasing order. In case of the 

same level for two different subtasks, the subtask which have greater value in sum of Upward 

rank and Downward values is selected from left to right in ordered list. 

 

𝐿𝑒𝑣𝑒𝑙(𝑇𝑖) = {
0,                                                              𝑖𝑓 𝑇𝑖 = 𝑇𝑒𝑛𝑡𝑒𝑟𝑦 

max (𝐿𝑒𝑣𝑒𝑙(𝑇𝑗))𝑇𝑗∈𝑝𝑟𝑒𝑑(𝑇𝑖) + 1,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (10) 

 

For instance, for DAG depicted in Fig. 3, Table 2 shows the priority values of different 

approaches for each node. 

Table 2. Task priority based on three approaches 

Tasks 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) 𝑟𝑎𝑛𝑘𝑑(𝑡𝑖) Level 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) + 𝑟𝑎𝑛𝑘𝑢(𝑡𝑖) 

𝑡0 

𝑡1 

𝑡2 

𝑡3 

𝑡4 

𝑡5 

𝑡6 

𝑡7 

𝑡8 

𝑡9 

𝑡10 

102 

79 

80 

52 

50 

57 

61 

34 

25 

32 

9 

0 

20 

22 

39 

46 

42 

41 

62 

62 

70 

93 

0 

1 

1 

2 

2 

2 

2 

3 

3 

3 

4 

102 

99 

102 

91 

96 

99 

102 

96 

87 

102 

102 

 

Hence, three queues of subtasks [ 
𝑡0𝑡2𝑡1𝑡6𝑡5𝑡3𝑡4𝑡7𝑡9𝑡8𝑡10],[ 𝑡0𝑡1𝑡2𝑡3𝑡6𝑡5𝑡4𝑡7𝑡8𝑡9𝑡10] and [𝑡0𝑡2𝑡1𝑡6𝑡4𝑡3𝑡9𝑡7𝑡9𝑡8𝑡10] are valid 

topological sort, based on Upward, Downward and Level ranking approaches [10]. As stated 

before, in the second phase, a subtask is picked up from in front of sorted list to be scheduled; 

the algorithm searches to find a processor which guarantees the earliest finish time for that 

subtask. Therefore, different states will be produced by small input DAG; even worse, when 



the input DAG is huge, it cannot be harnessed by deterministic algorithms; the reason why we 

develop heuristic approach to figure out such problem. 

 

5. Proposed Genetic Algorithm (GA) for Task Scheduling in Heterogeneous Systems 

In this section, we present our proposed heuristic method which take benefit from other 

approaches, i.e., Upward, Downward and Level rankings in their initial population. One of the 

oldest and applicable heuristic method is genetic algorithm (GA) which inspires from nature. 

In the other words, each individual adapting itself with environment circumstance will survive. 

So, emulated problems can work accordingly. Every candidate solution, individual in GA, 

which has more vicinity to optimal solution will remain in next generation. GA has some 

operators to produce appropriate generation. Our proposed method is depicted in Fig. 4. 

 

Input: GA and DAG characteristics  

Output: An optimal task scheduling  

1. Call INIT procedure to create initial population 

2. Repeat 

3.     Call Mapper procedure to apply task-to-processor mapping and evaluate fitness 

4.     Copy the elitism individuals directly to the next generation 

5.     Repeat 

6.         Call Roulette-wheel operator to select candidates  

7.         Call Crossover operator 

8.         Call Mutation operator 

9.     Until the new population is completed 

10.     Replace the old population with new one 

11. Until the termination criteria are met 

12. Return an optimal schedule 

End 

Fig. 4. Algorithm for Proposed Method 

5.1 Gens, Chromosomes and INIT procedure 

In GA, phenotype should be converted to genotype. In this regards, arbitrary encoding can be 

extended. In this paper, each subtask can be used as a gen; so, sequence of gens makes a 

chromosome. For instance, [ 𝑡0𝑡1𝑡2𝑡3𝑡6𝑡5𝑡4𝑡7𝑡8𝑡9𝑡10] can be known as a valid chromosome 

because each subtask is visited after its parents. To create initial population, we call INIT 

procedure to make current generation with Popsize fixed individuals. In this work we take 

Popsize=100. To take benefit from other approaches, we take three chromosomes from 

Upward, Downward and Level rankings. The rest chromosomes are created randomly and 

shuffled from multi queue with suitable distribution because inefficient dispersion of 

individuals has drastic affection on algorithm’s optimality, speed and convergency. The pseudo 

code of INIT procedure is depicted in Fig 5. It also uses a Shuffle procedure which is detailed 

in Fig 6. Also in Fig. 6, procedure feasible at line #18 checks whether a chromosome is valid 

or not. 

Procedure INIT 

Input: A DAG with its characteristics, PopSize, n as length of Population and chromosome respectively 

Output: An initialize Population with PopSize 

1. Size=1; 

2. Ind1= Call HEFT-UpwardRank to make first individual  

3. Copy Ind1 into Population 



4. Size=size+1; 

5. Ind2= Call HEFT-DownwardRank to make second individual  

6. Copy Ind2 into Population 

7. Size=size+1; 

8. Ind3= Call HEFT-LevelRank to make third individual  

9. Copy Ind3 into Population 

10. Size=size+1; 

11. Pop1= Shuffle ( Population(1) , n ) 

12. Pop2= Shuffle ( Population(2) , n ) 

13. Pop3= Shuffle ( Population(3) , n ) 

14. Copy PopSize/3 of individuals from Pop1 to Population so that containing its first individual. 

15. Copy PopSize /3 of individuals from Pop2 to Population so that containing its first individual. 

16. Copy PopSize /3 of individuals from Pop3 to Population so that containing its first individual. 

Return Population with PopSize 

Fig 5. INIT procedure for making initial population 

Procedure Shuffle ( Individual, n ) 

Input: An individual and n as length of its chromosome size 

Output: A list containing k members of individuals known as CurrentPop with CurrentPopSize. 

1. CurrentPopSize=1; 

2. CurrentPop= []; 

3. Copy individual to CurrentPop 

4. For i=1 to n-1 do 

5.     Find 𝑇𝑗 as the last predecessor of 𝑇𝑖 . 

6.     Find 𝑇𝑘 as the first successor of 𝑇𝑖 . 

7.     Temp=𝑇𝑖  

8.     L=k-1; 

9.     For q=i to k-2 do 

10.         𝑇𝑞 = 𝑇𝑞+1 

11.     End-For 

12.   𝑇𝐿 = 𝑇𝑒𝑚𝑝 
13.   If feasible(new individual) then  

14.       Add new individual to CurrentPop 

15.       CurrentPopSize=CurrentPopSize+1; 

16.   End-if 

17. // Again it repeats for original individual to make new one 

18.   L=j+1; 

19.   For q=i down to j+2 do 

20.       𝑇𝑞 = 𝑇𝑞−1 

21.   End-For 

22.   𝑇𝐿 = 𝑇𝑒𝑚𝑝 

23.   If feasible(new individual) then  

24.       Add new individual to CurrentPop 

25.       CurrentPopSize=CurrentPopSize+1; 

26.   End-if 

27. End-For 

Return CurrentPop with CurrentPopSize 

Fig 6. Shuffle procedure to explore search space 

 

5.2 Mapper Procedure 

In this phase, each chromosome which is representative of a candidate solution can be mapped 

on multi heterogeneous processors by HEFT algorithm, c.f. in 2.2. Then, makespan can be 

considered as a fitness value for evaluation; namely, each chromosome with lowest makespan 

is the fittest. 

5.3 Roulette-Wheel procedure 



Portion of individuals, with special probabilistic, are selected to create new generation. This 

will happen by crossover operator. In roulette-wheel, we take the procedure in which each 

chromosome with high fitness has greater chance to be selected. The equation (11), is the 

formula that indicates each chromosome chance to be selected. 

(11)                                                𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑃𝑜𝑝𝑆𝑖𝑧𝑒
𝑗=1

        

 

5.4 Crossover operator 

To create new generation, GA utilizes crossover operator. After couple of individuals are 

selected by roulette-wheel operator, individuals are input for crossover operator. From the 

outset, one random number is generated in [1..chromosome-length]. Then, it halves parents in 

two subsections. The left part of the first parent is placed for left part of the first child; then the 

right part of child is filled by gens which not appeared in this child when second parent’s gens 

are visited from left to right. Accordingly, the left part of second parent is placed to left part of 

second child; the rest will be filled by gens which not appeared in this child when first parent’s 

gens are visited from left to right. It is well illustrated in Fig. 7. In this phase, we take crossover 

rate, known as crate, 80 percent of PopSize. 

 

 

Fig. 7. Crossover operator in GA 

5.5 Mutation Operator 

The majority of evolutionary algorithm will get stuck in local optimum. The GA is not 

exempted from this event. To avoid from this phenomenon, the GA take benefit of mutation 

operator to create a chance for opening new room for searching unexplored search space which 

may have good solution. In mutation, one gen is randomly selected as 𝑡𝑖 then the first successor 

of this gen, subtask, is found kwon as 𝑡𝑗. Then the random gen, subtask 𝑡𝑘, where k belongs to 



[i+1..j-1] can be selected subject to all predecessor of this subtasks are ahead of 𝑡𝑖 in the sorted 

list. Then, the subtasks 𝑡𝑖 and 𝑡𝑘 can be substituted. In this way, a new individual is generated. 

Fig. 8 is depicted to show mutation operator in GA. As Fig. 8 indicates, subtask 𝑡7 in position 

6th is randomly selected. The first successor of 𝑡7 is 𝑡10 in DAG. Then, the random gen, subtask 

𝑡𝑘, should be selected in postion ϵ [7..10] so that all of predecessor of 𝑡𝑘 is ahead of 𝑡7 in 

chromosome. For instance, in position 7th, the subtask 𝑡8 is selected because its only 

predecessor, i.e. 𝑡5 is ahead of 𝑡7 in chromosome. Consequently, gens 𝑡7 and 𝑡8 can be 

substituted. In this phase, we take mutation rate, known as mrate, 20 percent of PopSize. 

 

Fig. 8. Mutation Operator in GA 

5.6 Termination Criteria 

GA is endless algorithm unless the user cut the program which reaches to special point. Typical 

termination criteria in such algorithms are predetermined rounds, reaching to appropriate 

fitness function and etc. In this algorithm, we iterate the program 100 times. The number 100 

is achieved experimentally. 

 

6. Simulation and Evaluation 

In this section, we applied series of experiments to evaluate the effectiveness of our proposed 

methodology. In this regard, we assess our work in term of total execution time, makespan, 

related to task graphs against HEFT versions and an existing approach such as Quantum genetic 

algorithm with rotation angle refinement for dependent task scheduling on distributed systems 

known as QGARAR[15]. 

6.1 Simulation Environment 

All experiments were implemented using Sony VAIO laptop with a 2.26 GHz Intel Core 2 Duo 

processor and 4 GB RAM and using Matlab software 2015. 

6.2 Evaluation of Methodology 

To evaluate proposed algorithm, we conduct this section in two folds. Firstly, we bring an 

example to show the effectiveness and application of the proposed algorithm. Secondly, we 

define complicated scenarios to reach concrete results. At first, take a DAG depicted in Fig. 3. 

We run our program and compare the result with three heuristic HEFT algorithms; namely, 

Upward, Downward, Level ranking approaches [10] and one newest heuristic such as 

QGARAR [15]. Fig. 9, Fig. 10, Fig.11, Fig. 12 and Fig. 13 illustrate Upward, Downward, Level 



ranking and QGARAR and our proposed approach respectively. Moreover, in these figures, 

the skewed lines indicate data transfer between different processors. 

 

 
Fig. 9. Upward Ranking Priority [10]. 

 
Fig. 10. Downward Ranking Priority [10]. 

 
Fig. 11. Level Ranking Priority [10]. 

 

 
Fig. 12. QGARAR [15]. 



 
Fig. 13. Our Proposed Scheduling 

Also, Fig. 14 illustrates comparison of total execution time, makespan, between approaches for 

DAG depicted in Fig. 3. As it depicts, our proposed method has the lowest makespen in 

comparison among others. 

 

 
Fig. 14. Comparison of makespan between approaches for DAG depicted in Fig.3 

 

Secondly, to reach concrete results we conduct 9 different scenarios. We define 3 types of 

graphs; namely, light, middle and heavy graphs with 30, 50 and 100 processing nodes each of 

which would run on 5, 8 and 10 heterogeneous parallel processors respectively. We take weight 

numbers which are produced with uniform distribution in [10..20] for processing nodes and 

uniform distribution weight numbers from [10..30] for communication costs between 

processors. Apparently, we define 9 scenarios, but for the sake of reasons which will be told, 

we analyze only 3 complicated scenarios, i.e., light, middle and heavy graphs on 5, 8 and 10 

processors respectively. For instance, take a random light DAG with 30 nodes that has 

aforementioned computation and communication features. We run it on parallel processors 

from 2 to 10 processors by increasing one processor in each step. We have recorded makespan 

for afore-said DAG as Fig. 15 illustrates. 



 

Fig. 15. makespan trajectory by increasing processors 

As the figure depicts the makespan are 353, 300, 239, 238 for 2,3,4 and 5 processors 

respectively. It indicates if we spend more processors there is not any improvement in 

makespan; it is a clear-cut proof of amdahl’s law because the dependecies between tasks 

suppress against speedup [16]. In the other words, for the processor numbers 𝑃∗>5 there is no 

changes in makespan. Anyway, 3 complicated scenarios have been executed 50 times; then, 

the average makespan as a result of each approach was recorded. Fig. 16 illustrates analysis of 

the first scenario with light random DAGs running on 5 heterogeneous parallel processors. 

 

Fig. 16. Comparison of approaches in term of makespan in the first scenario 

Also, Fig. 17 illustrates analysis of the second scenario with middle random DAGs running on 

8 heterogeneous parallel processors. 

 

 



 

Fig. 17. Comparison of approaches in term of makespan in the secomd scenario 

Finally, Fig. 18 illustrates analysis of the third scenario with heavy random DAGs running on 

10 heterogeneous parallel processors. 

 

 

Fig. 18. Comparison of approaches in term of makespan in the third scenario 

 

Since heuristic and evolutionary algorithms are not deterministic, but are stochastic in nature, 

we only analyze the outcome by several executions of different simulations. Therefore, we 

have conducted different scenarios to simulate. The simulation results show the high 

superiority dominance of proposed approach against multiple version of HEFT and marginal 

dominance against QGARAR; it is because of the strategies which proposed algorithm has 

taken. In the initial phase, it smartly constituted initial population from different heuristics to 

exploit efficient solutions and in the next phase it shuffled search space to explore promising 

ones. Although QGARAR has good treatment, our proposed approach are semi-random and 



applies benefit of both exploration and exploitation in search space. It is the reason the proposed 

algorithm has predominance against QGARAR in all scenarios. 

 

 

7 Conclusion and Future Work 

Task scheduler module is one of the most important component in distributed systems such as 

in Grid- and Cloud Computing. Inefficient resource allocation owing to inefficient task 

scheduling does not lead the economic sense. Because the underlying utilized resource is not 

rationale for the tasks being executed. On the other hand, users will definitely get rid of from 

inefficient providers thanks to competitive open market such as in multi-cloud environment. 

To survive in this competitive market, it compels providers to improve response time as a key 

element in quality of service parameters. The good responsiveness is achievable via smart 

scheduler the reason why we have extended a genetic-based heuristic task scheduling algorithm 

in such heterogeneous systems. To have good optimality, speed and convergence, we have 

taken benefit from other heuristic approaches in which we smartly put multi queue in initial 

population; consequently, our approach has had better result in term of average makespan in 

comparison with other existing approaches. It is because of the strategies which proposed 

algorithm has taken. In the initial phase, it smartly constituted initial population from different 

heuristics to exploit efficient solutions and in the next phase it shuffled search space to explore 

promising ones. Although QGARAR has good treatment, our proposed approach are semi-

random and applies benefit of both exploration and exploitation in search space. It is the reason 

the proposed algorithm has predominance against QGARAR in all scenarios. We envisage to 

extend a smart scheduling model which simultaneously improve both response time and 

resource utilization by applying dynamic voltage frequency scaling (DVFS) for tasks which do 

not have any time constraints. In other words, we intend to develop scheduling algorithm to 

find slack time of each task; by knowing time information of each task we can adjust frequency 

and voltage pair based on current workload. 
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