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Abstract— Analyzing liver cross-section images is a manual
and laborious task, slowing down critical research toward
finding alternative cures for patients with end-stage liver
disease. In this paper, we present methods to automatically
count hepatocytes cells, count nuclei and classify liver vessel
types, using input images of cell boundary and cell nuclei based
on a dataset of 21 images. Compared to a trained researcher,
the methods are able count cells, segment overlapping nuclei,
and classify vessel types, including portal vein, central vein,
and bile duct with reasonable precision and accuracy. Future
work includes improving classification accuracy and detecting
other cell types.

Index Terms— microscopy image processing, cell counting,
nuclei segmentation, vessel classification, SVM, Canny edge
detection, Hough transform

I. INTRODUCTION

Liver transplantation is currently the only cure for patients
with end-stage liver disease, yet currently over 14,000 pa-
tients are on the liver transplant waitlist awaiting a donor
[1]. Alternative treatment options are critically needed for
these patients.

Physicians and scientists contemplating new treatment
methods face the same major obstacle: understanding the
molecular mechanisms by which the proliferation of an
important type of liver cell called hepatocytes is regulated.
The Nusse Lab of the Stanford Institute of Stem Cell Biology
and Regenerative Medicine studies this class of specialized
cells and recently published work in identifying a population
of hepatocyte stem cells in the liver [2]. A major obstacle
in scaling the research is the laborious task of manual cell
counting from tissue section images.

This project leverages image processing and machine
learning techniques to tackle the unique challenges presented
by tissue section images. First, compared to tissue culture
images, cells in a tissue section image is highly heterogenous
with complex structures and ambiguous boundaries, making
cell counting a more difficult task. Second, tissue section
images may contain different types of cells, including hepato-
cytes, bile duct epithelial cells, endothelial cells, and immune
cells. In this project, we focus exclusively on the hepatocytes
cells which is the focus of the research. Third, in contrast to
most other cells in our body, hepatocytes can have more than
one nucleus. A final challenge is that in addition to cells, the
liver section images also show important features of a liver,
including central veins, portal veins, and bile ducts.

There are three distinct goals in the project: accurately
count the number of hepatocyte cells irrespective to their
stain, accurately segmented clustered nuclei, and accurately
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classify liver features, including central vein, portal vein and
bile duct. This work focuses on developing algorithms to
accomplish each goal and analyzing their performances. The
algorithm is applied to a dataset provided by the Nusse
Lab, consisting of 21 liver tissue section images, which are
manually labeled by a trained researcher.

This paper is structured as the following: first we will
present the implementation pipelines for cell boundary seg-
mentation, cell nuclei segmentation, and liver vessel type
classification. Next, the performance of each task using
various techniques is analyzed and compared.

II. BACKGROUND

Microscopy has been the tool used by biomedical scientists
to advance our fundamental understanding of life at the
cellular level. Advances in modern microscopic techniques,
such as the use of fluorescent markers and microscopic
systems with sub-light diffraction limits, lowered the cost of
acquiring images and enhanced the level of details of these
images [3]. On the flip side, the abundance, heterogeneity,
dimensionality, and complexity makes manual image analy-
sis a laborious and expensive task. Consequently, automating
the analysis of these images can help accelerate the progress
in cell biology and other related biomedical fields.

There are numerous benefits associated with potentially
automating these tasks, based on a survey of existing liter-
ature. Automating these tasks using image processing and
machine learning may result in significant time savings as
well as reduce measurement variability due to operator-
dependent and parameter-sensitive conditions [3]. Addition-
ally, automation has the potential of quantifying numerous
cell topology characteristics that are difficult or expensive to
do so manually [4].

There have been many papers published on developing
automated methods for segmenting and counting cells in
microscopy images. Common approaches range from classi-
cal image processing techniques, such intensity thresholding
and morphological operations, to modern approaches such as
tensor voting schemes, neural networks, and Markov random
fields [3]. Due to the astounding variety of the different
types of cell analysis problems, there are just as many cell
segmentation methods that combines existing techniques and
apply it to a new problem, and our project is no exception.

IIT. METHOD

The high-level image processing pipeline is illustrated in
figure 1. Each step in the pipeline is described in detail in
the following sections.
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Fig. 1: Image processing pipeline for cell boundary segmentation, cell nuclei segmentation, and liver features classifications.

A. Cell Boundary Segmentation

a) Edge Detection: The cell boundaries of a gray-scale
cell boundary input image are detected using the Canny edge
gradient. The Canny edge detector is chosen over other edge
detection methods such as Prewitt and Sobel edge detection
because the Canny edge detector calculates gradients based
on derivative of a Gaussian filter and therefore is less
susceptible to errors due to ambiguous cell boundaries. A
sample image resulting from Canny Edge detection is shown
in figure 2 .

Fig. 2: A sample cell boundary output image using Canny
edge detection.

b) Morphological Operations: A few morphological
operations are performed to the resulting edge image to
enhance the salient cell boundaries so that distinct cell
regions can be identified. First, the image is dilated using
a line structure of 2 pixel length in both the horizontal and
vertical direction. Second, the image is negated to so that
only the cell boundary information is present. Next, small
regions are flood filled to reduce noise. Finally, the cell
regions are smoothed using opening and closing operations
with a 1 pixel diamond structuring element. Sample output

images from each of the morphological operations is shown
in figure 4.

¢) Region Segmentation: Following edge detection and
morphological operation that enhance the boundary of cell
structures, regions are segmented by getting 8-connected
neighborhoods. While there are many techniques in the tech-
nical literature for extracting regions in microscopy images,
including the principal component analysis approach [5],
[6] or the graph mining process [7], segmenting regions
based on connectivity matches the identification pattern of
a researcher thereby providing satisfactory results. A sample
image of segmented regions, including potential cells, non-
cellular regions, and veins, are distinctively colored in a
gradient in figure 3.

Fig. 3: A sample image of segmented regions, including
potential cells, non-cellular regions, and veins, each distinc-
tively colored in a gradient.

B. Cell Nuclei Segmentation

a) Pre-processing: An input gray-scale image of the
nuclei is preprocessed using global image thresholding via
Otsu's method that is adjusted by a small tuning parameter
to reject ambiguous regions in the image.



Fig. 4: A sample image illustrating the following morphological operations: a) dilated gradient mask, b) binary image with
small holes filled in, c) smoothed cell boundaries using opening and closing.

b) Edge Detection: Following the binarization of the
image, Canny edge detection is used to detect nuclei edges
in the image. Canny edge detection also works well for nuclei
segmentation due to its robustness to noise.

¢) Morphological Operation: Following edge detec-
tion, the nuclei boundaries are enhanced by dilating the
image using a line structuring element of 3 pixel length in
the horizontal and vertical directions.

d) Hough Transform: To detect the circular shaped
hepatocyte cell nuclei, circular Hough Transforms emerged
as the best option among other techniques attempted which
include SIFT keypoint, SURF keypoint, and morphological
operation. The performances of each operation are compared
in the results section. MATLAB implements the circular
Hough Transform via the function imfindcircles, which takes
in the following parameters:

o Radius: Circle radius is the approximate radius of the
circular objects to detect, specified as a scalar of any
numeric type.

o Sensitivity: Sensitivity factor is the sensitivity for the
circular Hough transform accumulator array. Increasing
the sensitivity factor leads to detection more circular
objects and a potential increase in false detections.

o EdgeThreshold: Edge gradient threshold sets the gradi-
ent threshold for determining edge pixels in the image.
Decreasing the threshold leads to detection of more
circular objects with both weak and strong edges.

Based on testing with training images the circular Hough
Transform is robust to the EdgeThreshold parameters, be-
cause the Hough Transform is applied on an edge map
instead of a raw input image. Also, there is little variance
in the optimal sensitivity parameter among images, since the
microscopy images are taken in uniform and controlled light-
ing conditions. However, the algorithm is highly sensitive to
the radius range of the objects that it searches over.

Because the nuclei image potentially contains nuclei of
many types of cells, which have different nuclei size and
shapes, the algorithm is adjusted to detect only the hepato-
cyte cell nuclei that have large, circular shapes, borrowing
ideas from the existing literature [8], [9]. To do so, the
equivalent diameter of the connected regions are estimated

using the dilated edge map. The minimum radius is selected
to be the 25th percentile of the range limits to avoid
false positive detections of non-hepatocyte cells, while the
maximum radius is selected to be the 99th percentile to avoid
missing large cells. In summary, a sample image of the four
steps in nuclei segmentation are shown in figure 5.

C. Liver Vessel Type Classification

a) Feature extraction: From the results of nuclei and
cell boundary segmentation, relevant features are extracted
from each image in the dataset, including geometric proper-
ties, boundary properties, cell properties, neighboring region
properties. While all the geometric properties and a couple
of boundary properties are obtainable via the MATLAB
function RegionProps, the interesting features including SIFT
keypoint density, distance from bile duct, and average cell
size vs. relative distance are intended to quantify the domain
knowledge used by an expert researcher classifying vessels
present in a tissue as portal vein or central vein.

The implementations of domain-specific features are de-
scribed in detail below:

e SURF key point density: The number of SURF key-
points that appear divided by area around a region.
This is the Speeded-Up Robust Features keypoint de-
tector that captures corners and edges in images. This
parameter is also intended to capture the roughness or
smoothness around the boundary of a region.

o Count of nuclei: The number of nuclei that is present
in a cell. This parameter is computed by checking if
the nuclei centroid detected via nuclei segmentation
lie in any of the nearest regions detected via region
segmentation.

o Size of nuclei: The total area of nuclei that are present
in a cell. This number is a proxy for the amount of
DNA matter in a cell. This parameter is computed by
summing the total area of all nuclei detected in a cell
region.

o Average cell size vs. relative distance from vessel: The
average cell size relative to its distance away from a
cell. This set of features is computed by averaging
the size of cells at different distance away from the
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Fig. 5: A set of sample output images illustrating the steps of nuclei segmentation: a) binarized image using global
thresholding, b) edge image using Canny edge detection, ¢) enhanced edge image using dilation, d) detected nuclei using
Hough Transform

boundary of a vessel. They are intended to capture
the domain knowledge that cells tends to be more
compressed around a portal vein than a central vein,
which can be observed the colored live section images
in the Appendix(figures 14 and 15). For example, the
following figure 6 demonstrates the phenomena that
average cell size nearby a portal vein is smaller than
that nearby a central vein.

« Distance to Bile Duct: Distance to the nearest bile duct
computed as the centroid of the cell to the nearest
pixel of the region. This feature intends to capture the
domain-knowledge that portal veins tend to have adja-
cent bile ducts, which can be observed in the two sample
liver section images provided in the Appendix(figures
14 and 15).
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Fig. 6: Average cell size nearby a portal vein vs a central

b) Learning and Classification: The features extracted vein

above are used to create feature vectors for bile duct, central
vein and portal vein training examples in 12 images. These
training examples are passed into the following classifiers
and the models are tested using the remaining 9 images:



o Support Vector Machine: A multiclass SVM model is
fitted using an error-correcting codes multiclass model
with a one-vs-one SVM for each class and a gaussian
kernel.

o K-Nearest Neighbors: The majority class of the three
nearest neighbors of a feature vector is used for predic-
tion.

o Multinomial Logistic Regression: A multinomial logis-
tic regression model is fitted for the 3 classes with the
training set.

IV. RESULTS AND ANALYSIS
A. Cell Counting

The performance of the cell counting method based on the
cell boundary and nuclei segmentation pipelines is analyzed
in this section. An overlay image of cell boundary and
nuclei shows stained hepatocyte cells, which may have more
than 1 nucleus. The positions of regions segmented via cell
boundary are registered with the positions of segmented
nuclei, and a region is counted as a cell if it contains at
least one nucleus. A sample image showing regions labeled
with the number of nuclei present in that region is shown in
figure 7.

Fig. 7: A sample image showing cells labeled with the
number of nuclei present

Eight images are used for error analysis. The comparison
between the number of cells manually counted by a trained
researcher and these automatically counted are show in table
L.

Discrepancies between human counting vs. machine
counting may arise in many ways. For example, when a cell
boundary is ambiguous, a cell could be interpreted as one or
two cells. Also, nuclei counts within detected cells could be
erroneous. These discrepancies are quantified by an accuracy
metric, which is the difference between automatic cell counts
and manual cell counts over the total manual cell counts, as
shown in figure 8.

The automatic cell counting method tends to overcount
the number of 1 nuclei cells as the 1 nuclei cells have lower
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Fig. 8: A graph showing the comparison between the number
of cells manually counted by a trained researcher and these
automatically counted

accuracy. On the other hand, the automatic method is fairly
accurate counting the number of 2 nuclei cells. Overall, the
automatic algorithm achieves a respectable accuracy of 78%
for all cells.

B. Nuclei Segmentation

The performance of the nuclei segmentation method is an-
alyzed in this section. The output of the nuclei segmentation
pipeline is the count of hepatocyte cell nuclei that have a
characteristic large, circular shape. A sample output of each
of the four methods is shown in the figure 9, where a detected
nucleus is traced by a circle outline.

The Hough transform not only detects nuclei of different
size but also distinguishes between two overlapping nuclei.
SIFT keypoint detection fails to positively identify many
nuclei perhaps due to the uniform nature of nuclei that
lack corners for SIFT to positively identify as keypoints.
SUREF keypoint detection does a much better job than SIFT
keypoint detection, however SURF still creates many false
positives, i.e. nuclei identified where none exists. Finally, nu-
clei counting based on connected regions post morphological
erosion and dilation is not robust enough because it cannot
be finetuned to work across a range of images, and it detects
many false positives.

The performance of each methods is quantified by com-
paring with the number of nuclei counted by a trained
researcher. The number of false positives and false negatives
based on test images is shown in figure 10. Because nuclei
counts are cross-referenced with cell boundary segmentations
by eliminating any nuclei not belonging in a cell, recall is
more important than precision.

C. Vessel Type Classification

The classification results shown in figures 11, 12, 13 val-
idates the choice of features used, especially those extracted
based on domain knowledge. The SVM model unsurprisingly
performs the best out of the three learning models tested. The
features extracted capture the characteristics of bile ducts as
all three methods gave great prediction for them. However,
the lack of very clear distinctive characteristics between



Manual Labeling Cell Counts Automatic Detection Cell Counts
1 nuclei cell 2 nuclei cell 3 nuclei cell 2 nuclei cell 1 nuclei cell 2 nuclei cell 3 nuclei cell 2 nuclei cell
imgl 34 6 0 0 37 10 3 0
img2 28 0 0 0 26 6 1 1
img3 115 22 1 0 146 21 6 0
img4 41 7 0 0 48 8 0 1
img5 79 19 1 0 90 20 3 0
imgo6 51 19 0 0 67 12 1 0
img7 18 7 0 0 34 5 1 0
img8 24 7 0 0 37 5 1 0

TABLE I: A table showing the comparison between the number of cells manually counted by a trained researcher and these

automatically counted.

Fig. 9: Sample nuclei segmentation output using the following techniques: a) Hough Transform, b) SIFT keypoint, c) SURF

keypoint, and d) morphological connected neighbors

central veins and portal vein image regions leads to some
misclassifications.

V. CONCLUSION

The goals of this projects are threefold: 1) accurately
detect cell counts, 2) correctly classify liver vessel types, and
3) accurately segment overlapping nuclei. Given the limited
timeframe and resources available, this project successfully
developed methods that automatically count cells with about

80% accuracy and segment overlapping nuclei with about
60% precision and 100% recall. Also portal vein, central
vein, and bile duct in our very limited dataset were classified
with 91% precision.

There were many challenges encountered that were re-
solved to varying degrees in the project. Ambiguous cell
boundary is the biggest factor that contributes to over-
counting 1-nuclei cells, because the 2-nuclei cells with
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Fig. 10: A sample image showing cells labeled with the
number of nuclei present
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Fig. 11: Multiclass SVM model test confusion matrix

ambiguous boundaries may detected as two 1-nuclei cells.
Another major challenge is extracting the relevant features
for classification of vessel types based on domain knowledge.
For example, average cell size relative to distance from vessel
boundary is computed based on the observation that cells
around portal veins tend to be more compressed than these
around central veins. A final major challenge is the expensive
nature of generating labeled datasets, limiting the scope of
supervised learning algorithms that are feasible.

VI. FUTURE WORK

Future works could focus on improving the classification
accuracy of the vessel types, by building up a datasets
with thousands of labeled images. This could present the
opportunity of using autoencoders to extract classification
features for the models used here and perhaps a convolutional
neural network as a classification model. Based on a robust
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Fig. 12: K-nearest neighbors model test confusion matrix
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Fig. 13: Multinomial logistic regression model test confusion
matrix

feature classification algorithm, certain expensive research
tasks can also be automated, such as measuring the number
of cells closer to certain types of vessel. Finally, the project
scope can be expanded to include detecting other cell types,
such as endothethial cells and bile duct epithelial cells.
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Fig. 14: Sample liver tissue section image with vessel types labeled by a trained researcher, showing portal vein (PV), central
vein (CV), and bile duct (BD)



Fig. 15: Sample liver tissue section image with vessel types labeled by a trained researcher, showing portal vein (PV), central
vein (CV), and bile duct (BD)



Feature Type

Feature Name

Feature Description

Area The number of pixels in the region
Eccentricity The eccentricity of the ellipse that has the same second moments as the region
Perimeter The distance around the boundary of the region
Geometric Equivalent Diameter The diameter of a circle with the same area as the region
Major Axis Length The length (in pixels) of the major axis of the ellipse that has the same normalized
second central moments as the region
Minor Axis Length The length (in pixels) of the minor axis of the ellipse that has the same normalized
second central moments as the region
Orientation The angle between the x-axis and the major axis of the ellipse that has the same second-
moments as the region. The value is in degrees, ranging from -90 to 90 degrees.
Surf key point density The number of SURF keypoints that appear divided by area around a region. This is
Boundary the Speeded-Up Robust Features keypoint detector that captures corners and edges in

images

Bounding Box

The smallest rectangle containing the region

Convex Image

Binary image (logical) that specifies the convex hull, with all pixels within the hull
filled in (set to on)

Pixel List

A p-by-Q matrix that specifies the locations of pixels in the region.

Cell Properties

Count of nuclei

The number of nuclei that is present in a cell

Size of nuclei

The total area of nuclei that is present in a cell

Neighboring Regions

Average cell size vs. relative distance

The average cell size relative to its distance away from a cell

Distance to Bile Duct

The distance to the nearest bile duct computed as the centroid of the cell to the nearest
pixel of the region

TABLE II: Descriptions of features used in learning and classification




